Modelagem em superfícies inclinadas das radiações global e difusa usando técnicas de aprendizado de máquina

Data
2018-05-30
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (UNESP)

Resumo

Neste trabalho é realizado um estudo para estimar a transmissividade da radiação global (Ktβh) e a fração difusa (Kdβh) incidentes em uma superfície com inclinação de 22,85° na base horária utilizando técnicas de aprendizado de máquina (TAM), a partir de dados obtidos no período de 1998 a 2001 em Botucatu/SP/Brasil. As estimativas foram realizadas usando uma série de combinações de variáveis astronômicas e geográficas por meio de três técnicas de redes neurais artificiais (RNA) do tipo Perceptron Multicamadas (MLP), Função de Base Radial (RBF) e Regressão Generalizada (GRNN) e do Sistema Adaptativo de Inferência Neuro Fuzzy (ANFIS). Como referência foram elaborados modelos estatísticos (ME) de regressão linear e polinomial. No Capítulo 1 as estimativas de (Ktβh) foram realizadas por combinações de variáveis medidas e calculadas a partir da irradiação global na superfície horizontal (HgH) e nas estimativas de (Kdβh) utilizou-se combinações de variáveis medidas e calculadas a partir de (HgH) e da irradiação global na superfície inclinada (Hgβ). No Capítulo 2 as estimativas de (Kdβh) foram realizadas por combinações de variáveis medidas e calculadas a partir das irradiações difusa (HdH) e global (HgH) obtidas na superfície horizontal. Os indicadores estatísticos r (correlação), RMSE(%) (precisão) e MBE(%) (exatidão) foram utilizados para avaliar os resultados das estimativas. No capítulo 1 os melhores resultados nas estimativas de (Ktβh) a partir das combinações realizadas com (HgH) foram: MLP - RMSE=3,73%; RBF - RMSE=3,99%; GRNN - RMSE=5,27%; ANFIS - RMSE=3,78% e ME - RMSE=6,65%. Nesse caso os indicadores de precisão mostram uma redução de aproximadamente 44% com o uso da técnica (MLP) em comparação ao modelo estatístico (ME). Nas estimativas de (Kdβh) a partir das combinações de (HgH) os melhores resultados foram: MLP - RMSE=21,69%; RBF - RMSE=25,43%; GRNN - RMSE=29,39%; ANFIS - RMSE=23,08% e - ME - RMSE=35,35%. Da mesma forma os indicadores de precisão mostram uma redução de aproximadamente 39% com o uso da técnica (MLP) em comparação ao modelo estatístico (ME). E nas estimativas de (Kdβh) a partir das combinações realizadas com (Hgβ) os melhores resultados foram: MLP - RMSE=20,32%; RBF - RMSE=21,95%; GRNN - RMSE=29,11%; ANFIS - RMSE=21,75% e ME - RMSE=36,48%. Os indicadores de precisão mostram uma redução de aproximadamente 44% com o uso da técnica (MLP) em comparação ao modelo estatístico (ME). No capítulo 2 as melhores estimativas de (Kdβh) a partir das combinações realizadas com (HdH) foram: MLP - RMSE=4,03%; RBF - RMSE=5,84%; GRNN - RMSE=10,85%; ANFIS - RMSE=4,15% e ME - RMSE=12,42%. Os indicadores de precisão mostram uma redução de aproximadamente 67% com o uso da técnica (MLP) em comparação ao modelo estatístico (ME). Nas estimativas de (Kdβh) a partir de (HgH) os melhores resultados foram: MLP - RMSE=21,69%; RBF - RMSE=25,43%; GRNN - RMSE=29,39%; ANFIS - RMSE=23,08% e ME - RMSE=35,35%. Os indicadores de precisão mostram uma redução de aproximadamente 39% com o uso da técnica (MLP) em comparação ao modelo estatístico (ME). Os resultados mostram que a técnica de rede neural artificial MLP apresentou os melhores índices em todas as estimativas de (Ktβh) e (Kdβh) com reduções significativas quando comparadas aos resultados obtidos com as estimativas obtidas com os modelos estatísticos. Pela análise dos resultados é possível observar que o uso das técnicas de aprendizado de máquina (TAM) nas combinações de variáveis propostas e com os dados obtidos de Botucatu/SP, se apresentam como alternativa aos modelos estatísticos (ME) para estimar as variáveis de (Ktβh) e (Kdβh).


Descrição
Palavras-chave
Citação